The [FeFe]-hydrogenase maturase HydF from Clostridium acetobutylicum contains a CO and CN- ligated iron cofactor.

نویسندگان

  • Ilka Czech
  • Alexey Silakov
  • Wolfgang Lubitz
  • Thomas Happe
چکیده

Biosynthesis of the [FeFe] hydrogenases active site (H-cluster) requires three maturation factors whose respective roles are not understood yet. The clostridial maturation enzymes (CaHydE, CaHydF and CaHydG) were homologously overexpressed in their native host Clostridium acetobutylicum. CaHydF was able to activate Chlamydomonas reinhardtii [FeFe] hydrogenase apoprotein (CrHydA1(apo)) to almost 100% compared to the native specific hydrogen evolution activity. Based on electron paramagnetic resonance spectroscopy and Fourier-transform infrared spectroscopy data the existence of a [4Fe4S] cluster and a CO and CN(-) ligand coordinated di-iron cluster is suggested. This study contains the first experimental evidence that the bi-nuclear part of the H-cluster is assembled in HydF.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Insights into [FeFe] Hydrogenase Activation and Maturase Function

[FeFe] hydrogenases catalyze H(2) production using the H-cluster, an iron-sulfur cofactor that contains carbon monoxide (CO), cyanide (CN(-)), and a dithiolate bridging ligand. The HydE, HydF, and HydG maturases assist in assembling the H-cluster and maturing hydrogenases into their catalytically active form. Characterization of these maturases and in vitro hydrogenase activation methods have h...

متن کامل

Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system.

Maturation of [FeFe] hydrogenases requires the biosynthesis and insertion of the catalytic iron-sulfur cluster, the H cluster. Two radical S-adenosylmethionine (SAM) proteins proposed to function in H cluster biosynthesis, HydEF and HydG, were recently identified in the hydEF-1 mutant of the green alga Chlamydomonas reinhardtii (M. C. Posewitz, P. W. King, S. L. Smolinski, L. Zhang, M. Seibert,...

متن کامل

HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis.

In an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all three maturation proteins is sufficient to...

متن کامل

CO and CN- syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events.

The synthesis and assembly of the active site [FeFe] unit of [FeFe]-hydrogenases require at least three maturases. The radical S-adenosyl-l-methionine HydG, the best characterized of these proteins, is responsible for the synthesis of the hydrogenase CO and CN(-) ligands from tyrosine-derived dehydroglycine (DHG). We speculated that CN(-) and the CO precursor (-):CO2H may be generated through a...

متن کامل

Cell-free H-cluster Synthesis and [FeFe] Hydrogenase Activation: All Five CO and CN− Ligands Derive from Tyrosine

[FeFe] hydrogenases are promising catalysts for producing hydrogen as a sustainable fuel and chemical feedstock, and they also serve as paradigms for biomimetic hydrogen-evolving compounds. Hydrogen formation is catalyzed by the H-cluster, a unique iron-based cofactor requiring three carbon monoxide (CO) and two cyanide (CN⁻) ligands as well as a dithiolate bridge. Three accessory proteins (Hyd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEBS letters

دوره 584 3  شماره 

صفحات  -

تاریخ انتشار 2010